How to Average Complex Responses

IMPORTANT - The results below are from adding noise to both input and output. After understanding better the system, and the models involved in the statistics, I now realise that was wrong. New results with noise on the output only clearly show Correln as best (with Cartesian OK). I plan to post those results here, but can’t say commit to a date.


I’m going to post a fragment of some internal work here - I think it’s interesting, and I wanted to share the results with others - but I also need to give some disclaimers:

The last point is important to me. I’m a firm believer that there’s generally a right way to do statistics; that given a model for the processes involved you can use maximum likelihood or Bayesian statistics to find the right answer to a problem. But that doesn’t mean that a practical exploration of the issues isn’t also useful.


Below I describe some results from a variety of different algorithms to calculate the transfer function for a system.

The general process for the tests was as follows:

Input Signals

Two different input signals were used, each sampled at 40Hz, with a total duration of 4m10s (10,000 samples). First, a band-limited white-noise signal - a simple series of normally distributed random numbers:

Random Signal

Second, to simulate a repeated step, a square wave of 19 cycles:

Step Signal

High Pass Filter

The filter used in the test was generated by with the signal frequency as above and a knee at 1Hz. This gave coefficients

a0 = 1, a1 = -0.854636, b0 = 0.927318, b1 = -0.927318

The theoretical response for this filter was evaluated in the normal way, substituting z for exp(jwt). This response is show in the plots as a solid line and agrees well with the majority of points.

Additional Noise

To simulate “real” data, additional noise was added to the two signals (input and filtered output). This was normally distributed with an amplitude 5% the original signal.

In all cases the normally distributed noise is generated from the Box-Muller transform and a library PRNG. Neither of these is top-quality (Box-Muller is limited to 6 sigma deviations and the PRNG, random(), is a non-linear additive feedback design), but they should be sufficient for the analysis here (in my experience, PRNG limitations are significant only when measuring error distributions).

Response Calculations

The input and output signals were first processed using Welch’s method - a sliding window of size one-tenth the total duration was used, advancing by half a window width, to give a total of 19 separate sub-spectra, each overlapping its neighbours 50% to each side.

For each window position, the input and output spectra were de-medianed and multiplied by a Hann function. The FFT for the two pre-processed spectra were then calculated. The filter response can then be inferred by comparing the Fourier spectra of the input and output windows. In simple terms, the response at a given frequency is the output divided by the input.

The four processing algorithms used differ in exactly how this inferred response is averaged:


This method co-adds the complex response for each window and then divides by the total number of windows. It is a simple average, calculated using the usual arithmetic for complex operations (in effect, treating real and complex parts separately). Note that this is an “early” calculation - the response is calculated from each point in each window, and then averaged (cf Late below).

R(f) = < O(f) / I(f) >

where R is the response, as a function of frequency, O is the FFT of the output, I is the FFT of the input, and <> denotes the average over all Welch windows.


This is similar to Cartesian, but co-adds the amplitude and phase separately. Since the amplitude is the magnitude of the signal we would expect the final result to be an over-estimate in the presence of noise (just as the mean of -1 and 1 is zero, but the mean of their magnitudes is 1). The final phase is largely meaningless because this value is not “defined on a line” (the mean of 0 and 360 degrees is not 180).

amp(R(f)) = < amp(O(f)) / amp(I(f)) >
pha(R(f)) = < pha(O(f)) / pha(I(f)) >


This approach delays the calculation of the response, choosing instead to combine the average input and output spectra for each window, and then calculating the response from the average input and output spectra. Otherwise, the analysis is similar to Cartesian.

R(f) = <O(f)> / <I(f)>


This approach delays the calculation of the response (similar to Late), but finds the average of modified input and output signals. Both the input and output signals are multiplied by the complex conjugate of the input at the given frequency before averaging.

R(f) = <O(f) I*(f)> / <I(f) I*(f)>

Note that the denominator in the expression above is the input spectral density.


Noise Results

The results for the white noise signal, with no additional noise, are shown above. The first thing to note is that, in general, the majority of points agree with the expected values (solid line) except for the Polar phase (as expected).

However, there are some additional points worth noting. At the very lowest frequency, all estimations are incorrect (I do not understand why). More generally, over a range of the lowest frequencies, the Correln approach is noticeably more reliable. This bears out a possible justification for that approach: “I believe this is to reduce the effect of data segments where bins of F[x] are excessively small” - nibot at Finally, Late and, to a lesser extent, Polar, are particularly unreliable at low frequencies.

Step Results

The results for the step signal, with no additional noise, are shown above and confirm the conclusions from the white noise data. The main difference is additional noise / quantisation from the lack of information in the data (noise from numerical rounding is probably significant at low frequencies).

Again, Late is particularly poor and Polar gives meaningless phase results.

Additional Noise

The plots for signals with additional noise are analysed below. For these plots I have used different colours for the different algorithms as it helps identify the “spread” of values; this was not done for the no-noise case because it became too confusing. The symbols used remain consistent across all plots.

Random Amplitude

The plot above shows the inferred filter amplitude for the white noise signal with additional noise. All algorithms cluster symmetrically around the theoretical line except Polar which is one-sided (over-estimating, as expected). There is a clear ordering of quality (least noise): Correln is best, followed by Cartesian, Polar and, finally, Late.

Step Amplitude

The next plot, above, shows the inferred filter amplitude for the step signal with additional noise. Interestingly, here there is more bias: Polar is biased too high (as before), but Correln is biased too low. Late and Cartesian are unbiased, with Cartesian having the smaller spread.

Random Phase

In the phase analysis I have excluded Polar.

The plot for phase gives similar conclusions to the amplitude analysis above: all are symmetrical; Correln is preferred over Cartesian, and Late is much more noisy.

Step Phase

And this is similar to the white noise signal, but noisier. There is no bias seen (cf amplitude, where Correln was biased).


Of the four algorithms, Late is consistently noisiest, while Polar is biased with amplitude and gives meaningless phase.

Correln and Cartesian have lower spread, but Correln was biased in the noise step data. Cartesian is consistently unbiased, but performs worse, particularly when there is little signal.

For reliable, unbiased results Cartesian appears to be the best solution. It is one of the lower noise performers and remains unbiased.


With grateful thanks to nibot and Phonon at

Related Posts

blog comments powered by